Báo cáo biện pháp Hướng dẫn học sinh lớp 8 giải bài toán bằng cách lập phương trình
“Lập phương trình đối với một bài toán cho trước là biện pháp cơ bản để áp dụng toán học vào khoa học tự nhiên và kỹ thuật. Không có phương trình thì không có toán học, nó như phương tiện nhận thức tự nhiên”.(P.X.Alêkxanđơrôp)
Giải bài toán bằng cách lập phương trình trước tiên là biến bài toán bằng lời thành phương trình ứng với bài toán đã cho. Muốn vậy phải nắm vững “ngôn ngữ đại số” biết phiên dịch từ ngôn ngữ thông thường sang ngôn ngữ đại số, phải nắm vững nghệ thuật lập phương trình.
Ngôn ngữ đại số: Đó là thứ ngôn ngữ không dùng đến lời mà chỉ sử dụng các kí hiệu toán học.
Nghệ thuật lập phương trình: Mỗi phương trình lập được từ bài toán là ngôn ngữ đại số biểu thị mối tương quan giữa những đại lượng trong bài toán thông qua các số đã biết.
Để có phương trình tương ứng với bài toán (sau khi đã hiểu rõ bài toán) ta thường tiến hành như sau:
- Đặt ẩn số: ẩn là số chưa biết, số phải đi tìm. Thông thường bài toán yêu cầu tìm số nào thì nên đặt số đó là ẩn. Ngoại lệ khi chọn ẩn như vậy mà phương trình lập nên phức tạp hoặc khó khăn thì cần thay đổi cách chọn ẩn hoặc chọn thêm ẩn, ẩn đó có liên quan đến số cần tìm trong bài toán và cho phép ta lập phương trình dễ dàng hơn.
- Lập phương trình:
+ Hình dung cụ thể, rõ ràng yêu cầu của bài toán (quan hệ giữa số cần tìm, số chưa biết và những số đã biết).
+ Tách ra từng phần, phiên dịch theo ngôn ngữ đại số.
+ Kết hợp từng phần để có thể biểu diễn cùng một đại lượng bằng hai cách khác nhau thành đẳng thức, khi đó ta có một phương trình.Thông thường đưa ra bao nhiêu ẩn, cần thiết lập bấy nhiêu phương trình (trừ những trường hợp ngoại lệ: đưa thêm ẩn phụ vào, sau đó tìm cách khử đi hoặc lập phương trình dẫn đến tìm nghiệm nguyên ).
Tóm tắt nội dung tài liệu: Báo cáo biện pháp Hướng dẫn học sinh lớp 8 giải bài toán bằng cách lập phương trình
n có thể giải bằng phương pháp lập phương trình. Số tiết để chỉ dạy học giải các bài toán bằng cách lập phương trình là 7 tiết. Việc tổ chức hướng dẫn học sinh biết lập phương trình để giải các bài toán là điều quan trọng và cần thiết vì: 1.Giúp học sinh giải quyết dễ dàng nhiều bài toán. 2.Dạy giải bài toán theo phương pháp này đòi hỏi học sinh bao giờ cũng có cách nhìn tổng quát để phân tích tìm ra mối liên hệ giữa các sự kiện, chứ không tiến hành tính toán ngay nên ở học sinh phát triển tốt năng lực phân tích – tổng hợp, trừu tượng hóa, năng lực ký mã và giải mã. 3.Thông qua bài toán bằng cách giải phương trình còn gây hứng thú học tập môn Toán cho học sinh, phát triển trí tuệ và giáo dục, rèn luyện con người học sinh về mọi mặt. 4.Với phương pháp dạy đòi hỏi học sinh phải hiểu rõ các khái niệm về: số, phép toán, quan hệ hơn kém, quan hệ tỷ lệ thuận, tỷ lệ nghịch, đại lượng và các kỹnăng “dịch” từ “ngôn ngữ toán học” sang ngôn ngữ thông thường và ngược lại, rút gọn biểu thức, giải phương trình, Do đó bất cứ nội dung nào chưa chuẩn bị cho học sinh các kiến thức nền tảng thì sẽ khó hình thành cho học sinh giải bài toán theo phương pháp này. Ngoài các yêu cầu trên đây, trong khi dạy học sinh giải toán với những yêu cầu cần thiết là rèn luyện kỹ năng, phương pháp suy luận, phát triển thông minh của học sinh, giáo viên không nên bỏ qua việc chọn vẻ bề ngoài của bài toán để phát triển thêm năng lực suy luậ phát triển toàn diện cho học sinh. 2. Thực trạng chung của vấn đề. Về phía giáo viên Có thể khẳng định rằng đây là một trong những kiểu bài tương đối khó với giáo viên. Khó khăn trước hết là về kiến thức, về phương pháp. Chỉ trong một số tiết giải bài toán bằng cách lập phương trình mà dung lượng kiến thức không nhỏ có rất nhiều dạng toán, rất nhiều vấn đề cần đề cập nâng cao. Giáo viên phải làm sao để học sinh có đủ kiến thức, học sinh có “nghệ thuật lập phương trình” ,vừa tránh được sự giảng giải nhàm chán đều đều từ đầu đến cuối tiết học vừa cuốn hút học sinh. Vậy nguyên nhân do đâu? Thứ nhất: Các tài liệu để giáo viên tham khảo không phổ biến nên giáo viên ít có cơ hội để bổ sung phương pháp dạy. Thứ hai: Do giáo viên chưa tìm được phương pháp tối ưu, chưa đầu tư nhiều để suy nghĩ đưa ra hệ thống những lời chỉ dẫn cần thiết cho học sinh trong các tiết học. Về phía học sinh Với giáo viên, việc dạy học giải bài toán bằng cách lập phương trình là khó thì với học sinh kiểu bài này còn khó hơn. Những chỉ dẫn tản mạn của giáo viên, thông thường học sinh không nhớ và hệ thống hóa được. Vì thế tất cả những chỉ dẫn đó chỉ trông vào nhận thức của học sinh, học sinh lại nhanh quên. Mặc dù trong sách giáo khoa đại số 8 đã có một số bài tập giải mẫu các bài toán và một vài chỉ dẫn lập phương trình nhưng những hướng dẫn đó chưa cung cấp cho học sinh đầy đủ những cơ sở vững chắc để hiểu rõ cách giải các bài toán. Còn có những nguyên nhân khác làm cho học sinh giải chưa tốt bài toán bằng cách lập phương trình, đó là: - Học sinh còn yếu về kỹ xảo ghi tóm tắt giải thiết bằng ký hiệu để giúp phân tích tổng hợp bài toán, giúp diễn tả rõ hơn mối quan hệ giữa các đại lượng đưa vào bài toán. - Nhiều học sinh khó hình dung được mối liên hệ phụ thuộc giữa các đại lượng đưa vào bài toán, không biết diễn tả mối phụ thuộc giữa các đại lượng đưa vào bài toán, không biết diễn tả mối phụ thuộc này bằng ký hiệu cho nên khó chuyển bằng lời sang ngôn ngữ toán học trừu tượng. - Một số học sinh không hiểu giải một bài toán là như thế nào. Vì thế không giải đầy đủ, không biết nghiệm của phương trình tìm được có là đáp số của bài toán này không. - Giáo viên ít chú ý tới cấu trúc của những bài toán phức hợp từ những bài toán cơ bản, cũng như ít phân tích các bài toán. Trong sách giáo khoa toán THCS chưa chú ý tới hệ thống những bài tập về lập các bài toán. Và nguyên nhân của những nguyên nhân: “tôi nghĩ rằng nếu việc học toán thuộc về trí tuệ của loài người mà lại trở thành điều không thể đạt đối với nhiều người thì công bằng là phải quy điều đó về khuyết điểm của nghệ thuật và phương pháp giảng dạy. 3. Mô tả quá trình để giải bài toán bằng cách lập phương trình . Các bài tập chuẩn bị: Trước khi cùng học sinh giải các bài toán phức hợp trong tiết học tôi đã cùng học sinh xây dựng một cách hợp lí những bài toán tương tự từ những bài đơn giản cơ bản để đi tới những bài phối hợp và phức tạp. Chỉ khi học sinh học được cách xây dựng tốt thì học sinh mới phân tích đúng bài không mất nhiều thời gian. Trong quá trình giảng dạy nhất là các tiết giải bài toán bằng cách lập phương trình tôi luôn chú ý đề ra nhữngbài tập hợp lí và có hệ thống, đồng thời thỉnh thoảng ôn tập chung. Các bài toán cơ bản : 1. Hãy biểu thị bằng công thức mối liên hệ phụ thuộc giữa số bị chia a, số chia b, thương q và số dư r. Hãy biểu thị từng số qua các số còn lại. 2. Viết số a nhiều hơn b gấp m lần bằng nhiều cách khác nhau. 3. của m là x .Vậy x =? 4. của x là m .Vậy x =? 5. a% của m là x. Vậy x = ? 6. Hãy viết số gồm a trăm, b trục, c đơn vị, điều kiện. Hãy viết số gồm a chục, b đơn vị, điều kiện. 7. Hiệu suất (năng suất) lao động là n, thời gian làm việc là t, khối lợng công việc được hoàn thành là A. Hãy biểu diễn mối quan hệ phụ thuộc bằng các công thức. 8. Vận tốc chuyển động của một vật là v, thời gian chuyển động là t, quãng đường là s. Hãy viết công thức biểu thị mối liên hệ giữa s, v, t. 9. Vận tốc riêng của một chiếc ca nô là vc, vận tốc của dòng chảy là vp, vận tốc của ca nô đi xuôi dòng là vt. Hiệu số giữa vận tốc xuôi dòng và ngược dòng nước là: vt – vp. Hãy thành lập những công thức khác nhau chứa những đại lượng trên. 10. Nếu ký hiệu khoảng cách giữa hai điểm trên một vùng nào đó là D, khoảng cách giữa hai điểm đó trên bản đồ là d, tỷ lệ xích là m thì mối liên hệ phụ thuộc được biểu diễn bằng công thức nào. 11. Giá tiền của một loại hàng T, số lượng hàng là m, tiến vốn là c. Hãy viết công thức về mối liên hệ giữa T, m, c. 12. Cho khối lượng công việc là l. Hãy viết công thức về mối liên hệ phụ thuộc giữa hiệu suất (năng suất) n, thời gian để hoàn thành công việc đó là t và khối lượng công việc l. 13. Công suất của một động cơ là P, thời gian làm việc là t, công là A, biểu thị mối tương quan giữa P, A, t. 14. Cho nước chảy vào một cái bể có thể tích V lít qua một vòi phải mất t giờ, hiệu suất của vòi là N lít trong một giờ. Hãy biểu thị mối liên hệ phụ thuộc giữa các đại lượng V, N và t. 15. Một người gửi tiền vào ngân hàng a đồng với lãi suất b% hàng năm. Hãy biểu thị số vốn của người đó sau một năm bằng công thức. Ký hiệu số vốn này bằng K. 16. Cho thể tích của một bể chứa V. Hãy biểu thị sự phụ thuộc giữa hiệu suất n của ống dẫn nước vào bể, thời gian đầy bể là t. 17. Hãy biểu thị bằng công thức mối liên hệ phụ thuộc giữa khối lượng m, thể tích v và khối lượng riêng D. Hãy viết công thức cho mỗi đại lượng. 18. Hãy vẽ phác họa những hình đã biết và viết công thức để tính diện tích của chúng nếu kí hiệu các cạnh là a, b, chiều ca là h, bán kính R, diện tích S. 19. Hãy viết công thức để tính thể tích những hình mà em biết. Sau khi đã vẽ phác chúng và ký hiệu những yếu tố cần thiết. 20. Trong vụ mùa những hecta thu được a kg/ha, diện tích là S ha, thu hoạch toàn vụ là P kg. Biểu thị mối liên hệ phụ thuộc giữa a, S và P. 21. Hãy biểu thị bằng công thức trạng thái định lượng của một đại lượng nếu như trạng thái ban đầu của nó là H sự thay đổi xảy ra là M, trạng thái cuối cùng là K (các trường hợp có thể là: H M = K; H * M = K; H : M = K Trong chương trình môn toán trong các tiết học có các bài toán giải bằng cách lập phương trình tôi luôn cho học sinh làm các bài tập chuẩn bị. Trước khi giải các bài toán phức tạp thì nên phức tạp hóa dần dần các bài tập. Vậy thì các giáo viên tổ chức cho học sinh làm các bài tập chuẩn bị như thế nào? Mỗi học sinh có những phương pháp và biện pháp tích cực làm các bài tập. Những bài tập này có thể ra cho học sinh làm tại lớp trước khi giải các bài toán phức tạp. Các giai đoạn giải bài toán bằng cách lập phương trình: Trong mỗi bài toán đều có những dữ kiện rõ ràng và không rõ ràng về mối liên hệ phụ thuộc giữa các đại lượng. Một trong những nhiệm vụ của giáo viên là dạy cho các em biết biến những điều chưa rõ thành rõ, quan tâm đến tâm đến tất cả các dữ kiện và những mối liên hệ phụ thuộc trong giả thiết bài toán. ở lớp 8 khi giải một bài toán tôi luôn chú ý hình thành đầy đủ các thao tác – các giai đoạn giải toán bằng cách lập phương trình. Cụ thể có 7 giai đoạn(3 bước), đó là: + Phân tích và tự viết giả thiết bài toán. Phân tích hình vẽ (nếu có). + Nêu lên cơ sở để lập phương trình. + Lập phương trình. + Giải phương trình. + Nghiên cứu các nghiệm của phương trình nhằm xác định lời giải của bài toán. Phân tích ý nghĩa của giải bài toán. Kiểm tra các phép tính và lập luận. + Viết đáp số. + Phân tích cách giải bài toán. Bình luận cách giải bài toán. Xác định những nguyên tắc chung để giải các bài toán tương tự. Tìm những biện pháp thích hợp hơn để giải một bài toán. Giai đoạn 1: Phân tích và tự viết giả thiết bài toán. Trong giai đoạn đầu tôi đã chỉ dẫn cho học sinh những điều sau: 1. Tìm hiểu ý nghĩa đề bài toán và ý nghĩa của từng lời. 2. Xác định đối tượng nghiên cứu. 3. Làm rõ các quá trình được diễn tả trong bài toán 4. Chỉ ra các đại lượng đặc trưng cho mỗi quá trình cho chúng những ký hiệu và đặt những đơn vị đo. Tìm mối quan hệ giữa các đại lượng và viết công thức diễn tả quan hệ đó. Nếu khó viết được dưới dạng tổng quát ngay thì hãy viết nó trong những biểu thức riêng lẻ rồi sau đó mới viết dưới dạng tổng quát. 5. Viết giả thiết dưới dạng có thể và dễ hiểu đối . Chọn một trong những đại lượng chưa biết và ký hiệu nó bằng một chữ cái, lập các biểu thức đại số gồm các dữ kiện của ẩn số cho mỗi quá trình của bài toán. Đừng quên những đơn vị được chọn để đo, hãy giản ước các biểu thức. Chú ý: Nếu như khó viết ngay các biểu thức đại số thì lấy số có lý do nào đó thay cho đại lượng chưa biết và lập các biểu thức số. Sau khi đã hiểu cấu trúc của biểu thức hãy ghi nó bằng chữ cái (x, y, ). 6. Sắp đặt thứ tự các biểu thức đại số đã được viết thuận tiện cho các phép tính và các phương trình, hãy sử dụng ở đây các bảng, đồ thị, hình vẽ hoặc là những chú thích của đầu bài toán. Sau khi xác định những đối tượng chủ yếu cần nghiên cứu, các quá trình được diễn tả trong bài toán và các công thức liên kết các đại lượng đó thì việc chuyển những điều ghi chép bằng lời ra ngôn ngữ toán học là một phần tự nhiên của việc giải một bài toán. Sự phân chia bài toán ra từng phần là cơ sở của sự phân tích. Nếu các phần tách ra được kết thúc một cách logíc cùng với mối liên quan của chúng được làm rõ thì cấu trúc của bài toán sẽ được phản ánh một cách rõ nét trong nhận thức của học sinh và điều đó đảm bảo những kết quả nhất định trong khi giải một bài toán. Bảng là một phương tiện, một công cụ của tư duy khi phân chia một bài toán ra những phần hợp thành quan trọng, cũng như khi tổng hợp các phần ấy, cần thiết để lập phương trình. Mỗi một biểu đồ hoặc mỗi dòng của bảng có chứa đựng một nội dung thuần túy logíc. Bảng đã lập xong sẽ tạo khả năng nhìn được tổng quát mối tương quan giữ các yếu tố của bài toán nhờ đó tìm ra cách giải. Trong sách giáo khoa Đại số 8 cũng đã đưa ra các bảng khi phân tích tìm cách giải một số bài toán làm ví dụ nhưng không nêu rõ cách lập như thế nào (các cột, các dòng ghi những gì). Đó là vấn đề giáo viên cần phải khai thác tự tìm cho mình hướng đi khi hướng dẫn học sinh giải toán. Qua thực tế giảng dạy tôi thấy bảng, sơ đồ đối với học sinh là dễ và đơn giản hơn nhiều so với việc trình bày bằng lời. Chỉ khi tất cả những mối tương quan giữa các phần của bài toán đã được trông thấy rõ ràng thì tốt hơn là có thể trình bày bằng lời. Điều đó xác định thứ tự giới thiệu cho học sinh phương pháp trình bày lời giải một bài toán: Đầu tiên là lập bảng ghi tóm tắt, sau đó trình bày bằng lời văn. Giai đoạn II: Những cơ sở để lập phương trình 7. Hãy chọn một giữ kiện không nằm trong những điều ghi tóm tắt giả thiết của bài toán. Nó là cơ sở để lập phương trình. Hãy lập cho nó một biểu thức đại số phù hợp với đại lượng chưa biết. Nếu như tất cả các dữ kiện đều nằm trong phần ghi tóm tắt giả thiết bài toán thì cơ sở để lập phương trình được diễn tả bằng lời. Trong trường hợp này có thể phân tích câu cho biết đặc điểm so sánh các biểu thức đại số chẳng hạn chúng bằng nhau, bằng một nửa, gấp đôi Sau khi đã chọn đại lượng như vậy mà đối với nó có hai biểu thức khác nhau thì nên so sánh các giá trị bằng số của chúng, các giá trị này là cơ sở để lập phương trình. Giai đoạn III: Lập phương trình 8. Nên ghi các biểu thức đại số phản ánh cơ sở để lập phương trình thành một hàng sao cho giữa chúng có thể đặt các dấu của các phép tính hoặc là dấu bằng. Sau đó so sánh các giá trị bằng số của chúng và xác định giá trị nào lớn hơn bao nhiêu đơn vị hoặc bao nhiêu lần. Sự so sánh này sẽ chỉ ra cần biến đổi như thế nào (tăng, giảm) một trong các giá trị để có thể đặt dấu bằng. Giai đoạn IV: Phân tích phương trình và giải phương trình 9. Khi khảo sát các phương trình nên khảo sát các phương pháp biến đổi thích hợp nhất. Khi giải một phương trình bậc nhất nên áp dụng thuật toán đã được thừa nhận. - Quy đồng mẫu rồi khử mẫu thức. - Mở các dấu ngoặc, điều đó sẽ tạo khả năng tách các đại lượng đã biết ra khỏi những đại lượng chưa biết. - Đưa tất cả các số hạng đã biết (bằng số) sang một vế, số hạng chưa biết (chứa ẩn) sang vế khác của phương trình. - Làm xuất hiện các số hạng đồng dạng trong cả hai vế của phương trình. - Chia cả hai vế của phương trình cho hệ số của ẩn nếu như hệ số này khác 0. Giai đoạn V: Nghiên cứu các nhiệm vụ của phương trình để xác định nghiệm phù hợp với giả thiết của bài toán, phân tích ý nghĩa lời giải, kiểm tra các phép tính và lập luận. Để học sinh hình dung rõ tất yếu các giá trị của biện luận lời giải, phân tích ý nghĩa của nó tôi đã hướng dẫn học sinh khảo sát một loại bài tập thích hợp, phản ánh những trường hợp riêng khác nhau của các nghiệm. Những chỉ dẫn cho học sinh trong giai đoạn này 10. Để xác định những đáp số của bài toán cần phải nghiên cứu các nghiệm của phương trình, phân tích ý nghĩa các nghiệm. Trong những trường hợp đại lượng phải tìm của bài toán và ẩn số của phương trình trùng nhau cần phải tính đến điều sau: Nếu như đại lượng được nghiên cứu có giới hạn và nghiệm của phương trình lại vượt qua giới hạn thì nghiệm này không thể là đáp số của bài toán. Những nghiệm âm của phương trình có thể là những đáp số của bài toán trong những trường hợp nếu đại lượng phải tìm có thể kấy giá trị âm. Nếu như phương trình không có nghiệm thì bài toán không có đáp số. Ngay cả khi ẩn số của bài toán tìm được nhờ thực hiện một sự phân tích nào đó, đói với các nghiệm của phương trình thì cũng phải rút ra những kết luận tương tự như trên về các giá trị của các đại lượng phải tìm. 11. Để kiểm tra các phép tính nên thay các giá trị tìm được vào phàn ghi tóm tắt giả thiết của bài toán và tìm các giá trị bằng số của tất cả các biểu thức đại số được ghi trong khi lập phương trình. Hãy so sánh các giá trị bằng số của các vế trái và phải. Giai đoạn VI: Viết đáp số Điều quan trọng là dạy học sinh biết viết đáp số theo bài toán không phải như viết nghiệm của phương trình. Muốn vậy cần lưu ý học sinh rằng trong bảng chúng ta lập có nhiều ẩn số, một phần trong chúng là câu trả lời của bài toán. 12. Đọc để biết bài toán hỏi cái gì. Chọn các số phù hợp với câu hỏi của bài toán để viết bổ sung. Nếu không có những số như vậy thì nên thực hiện các phép tính bổ sung bằng các số của bảng để được đáp số. Nếu đáp số gồm một vài số thì nên viết chúng theo thứ tự của bài toán hỏi. Giai đoạn VII: Phân tích cách giải bài toán Vì mục đích đặt ra trong giảng dạy không phải chỉ thông báo cho học sinh tổng số các kiến thức nhất định mà còn phải rèn luyện cho học sinh kỹ năng, kỹ xảo tự lập giải toán ngoài ra còn phải lĩnh hội được những quan niệm và phương pháp nghiên cứu của bộ môn. Cho nên trả lời câu hỏi của bài toán không phải là giai đoạn cuối cùng của phép giải. Ta có thể gọi giai đoạn này là giai đoạn nhận thức tư tưởng, là giai đoạn tư duy về quan niệm và phương pháp giải toán đã cho và cả những bài học tương tự, nghiên cứu các quy tắc để giải chúng. Thiếu giai đoạn này thì việc giải toán sẽ không đầy đủ giá trị. Đây là giai đoạn quan trọng của sự tổ chức hợp lý lao động trí óc của học sinh: Phân tích công việc đã làm, loại trừ các phép tính không cần thiết, đơn giản cách giải, tìm cách thích hợp hơn để giải bài toán.Với quan điểm thực hành, giai đoạn VII là giai đoạn kết thúc công việc, giai đoạn trọng điểm cuối cùng của lời giải. Qua cách trình bày ở trên, ta thấy: Để lập được phương trình, ta cần khéo chọn ẩn số và tìm sự liên quan giữa các đại lượng trong bài toán. Lập bảng biểu diễn các đại lượng trong bài toán theo ẩn số đã chọn là một phương pháp thường dùng. Các ví dụ minh hoạ Bài toán 1 : Một xưởng may phải may xong 3000 áo trong một thời gian quy định .Để hoàn thành sớm kế hoạch , mỗi ngày xưởng đã may được nhiều hơn 6 áo so với số áo phải may trong một ngày theo kế hoạch . Vì thế 5 ngày trước khi hết thời hạn , xưởng đã may được 2650 áo . Hỏi theo kế hoạch , mỗi ngày xưởng phải may xong bao nhiêu áo Phân tích bài toán: bài toán thuộc loại toán năng xuất, có hai giai đoạn là theo kế hoạch và thực hiện. Các đại lượng là số áo may trong 1 ngày , thời gian may , số áo Số áo may 1 ngày Số ngày Số áo may Kế hoạch x (áo) (ngày) 3000 (áo) Thực hiện x + 6 (áo) (ngày) 2650 (áo) Đk : x nguyên dương Cở sở để lập phương trình :vì xưỏng may xong 2650 áo trước khi hết hạn 5 ngày . Phưong trình : - 5 = Giải phưong trình chức ẩn ở mẫu bằng cách đưa về phương trình bậc hai có nghiệm là :x1 =100 (tmđk) x2 = - 36 (loại ) Trả lời bài toán : theo kế hoạch mỗi ngày xưởng phải may xong 100 áo Bình luận cách giải : với dạng toán có 3 đại lượng trong đó có một đại lượng bằng tích của hai đại lượng kia (toán năng xuất) nên phân tích các đại lượng bằng bảng thì dễ lập phương trình bài toán. Bài toán 2 : Bác Hiệp và cô Liên đi xe đạp từ làng lên tỉnh trên quãng đường dài 30 km ,khởi hành cùng một lúc .Vận tốc xe của bác Hiệp lớn hơn vận tốc xe của cô Liên là 3 km / h nên bác Hiệp đã đến tỉnh trước cô Liên nửa giờ .Tính vận tốc xe của mỗi người. Phân tích bài toán : Hai đối tượng tham gia bài toán là bác Hiệp và cô Liên , còn các đại lượng liên quan là quãng đường (đã biết) , thời gian và vận tốc( chưa biết), các đại lượng ấy quan hệ với nhau theo công thức : Thời gian (h) = Quãng đường(km)/ Vận tốc(km/h) Nếu chọn một đại lượng chưa biết làm ẩn. Gỉa sử gọi vận tốc xe của cô Liên là x(km/h) ta có thể lập bảng để biểu diễn các đại lượng trong bài toán như sau : v (km/h) t(h) s(km) Bác Hiệp x + 3 30 Cô Liên x 30 ĐK : x>0 Bác Hiệp đến tỉnh trước cô Liên nửa giờ hay 1/2(h) vậy ta có phương trình : - = Giải phương trình chứa ẩn ở mẫu bằng cách đưa phương trình về phương trình bậc hai ta được nghiệm là : x1 =12 (tmđk) x2 = - 15 (loại) Trả lời bài toán : Vận tốc xe của cô Liên là 12 (km/h). Vận tốc xe của bác Hiệp là 15 (km/h). Bình luận cách giải : loại toán chuyển động cùng chiều hay ngược chiều ta phải xác định xem có mấy đối tượng tham gia trong bài toán và các đại lượng tham gia trong loại toán này là : Vận tốc , thời gian ,quãng đường. Đặc biệt nên lập bảng để dễ lập phương trình hơn. Bài toán 3 : Hai đội thợ quét sơn một ngôi nhà . Nếu họ cùng làm thì trong 4 ngày xong việc . Nếu họ làm riêng thì đội I hoàn thành công việc nhanh hơn đội II là 6 ngày . Hỏi nếu làm riêng thì mỗi đội phải làm trong boa nhiêu ngày để xong việc ? Phân tích bài toán: Ba quá trình : Việc làm của đội I, việc làm của đội II, việc làm tập thể của hai đội. Các đại lượng : toàn bộ khối lượng công việc A = 1, thời gian t ngày, năng xuất n.1/ngày. Công thức tương quan : A = n.t ; 1 = n.t Các quá trình Toàn bộ khối lượng công việc thời gian(HTCV) Năng xuất 1 ngày Đội I 1 x(ngày) (
File đính kèm:
- bao_cao_bien_phap_huong_dan_hoc_sinh_lop_8_giai_bai_toan_ban.doc